机器学习笔记
分类
准确率:所有样本中预测正确的占比
accuracy=TP+TN+FP+FNTP+TN=T+FT
精确率:预测为正的样本中真正的正样本占比
precision=TP+FPTP=P′TP
召回率:正样本中预测为正的占比
recall=TP+FNTP=PTP
F1:精确率和召回率的调和均值
F12F1F1F1=precision1+recall1=precision+recall2⋅precision⋅recall=2TP+FP+FN2TP=P′+P2TP
F-score:
Fscore=(1+β2)⋅β2⋅precision+recallprecision⋅recall
序列
BLEU(Bilingual Evaluation understudy)
CPn(C,S)=∑i∑khk(cj)∑i∑kmin(hk(ci),maxj∈mhk(sij))
惩罚因子BP(Brevity Penalty)
b(C,S)={1,e1−lcls,lc<lslc≥ls
BLEUN(C,S)=b(C,S)exp(n=1∑NωnlogCPn(C,S))
机器翻译
ROUGE(Recall-Oriented Understudy for Gisting Evaluation)
ROUGE-N | 基于N-gram公现性统计 |
---|
ROUGE-L | 基于最长公有子句共现性精确度和召回率Fmeasure统计 |
ROUGE-W | 代权重的最长公有子句共现性精确度和召回率Fmeasure统计 |
ROUGE-S | 不连续二元组共现性精确度和召回率Fmeasure统计 |
ROUGE-N
ROUGE−N=∑S∈ReferencesSummaries∑gramn∈SCount(gramn)∑S∈ReferencesSummaries∑gramn∈SCountmatch(gramn)
ROUGE-L
最长公共子句longest common subsequence(LCS)
Rlcs=mLCS(X,Y),m=len(X)
Plcs=nLCS(X,Y),n=len(Y)
Flcs=Rlcs+β2Plcs(1+β2)RlcsPlcs