sklearn中的广义线性模型

模型的通用公式

其中$w=(w_1,\dots,w_p)$ 作为coef_;$w_0​$作为intercepr_

普通最小二乘法

LinearRegression

岭回归

$\alpha$ 是控制系数收缩量的复杂性参数:$\alpha$ 的值越大,收缩量越大,模型对共线性的鲁棒性也更强。

共线性:线性回归模型中的解释变量之间由于存在精确相关关系或高度相关关系而使模型估计失真

Ridge,RigdeCV:广义交叉验证(GCV),默认留一验证(LOO-CV)

Lasso

$\alpha$ 是常数,$\Vert w \Vert_1$ 是参数向量的$l_{1-norm}$范数

Lasso,lasso_path:通过搜索所有可能的路径上的值来计算系数

LassoCV,LassoLarsCV,LassoLarsIC

多任务Lasso

MultiTaskLasso

弹性网络

ElasticNetCV通过交叉验证来设置参数alpha($\alpha$)和l1_rati0($\rho$)

多任务弹性网络

MultiTaskElasticNet