transformers(与pytorch-transformerspytorch-pretrained-bert相似)是python的一个库,它提供了用于自然语言理解(NLU)和自然语言生成(NLG)的多种预训练模型(BERT,GPT-2,RoBERTa,XLM,DistilBert,XLNet…..),为100多种语言提供了超过32种的预训练模型,并实现Tensorflow 2.0和Pytorch的深度互操作。

特点

  • 与pytorch-transformers一样容易使用
  • 如Keras一样强大简洁
  • 在NLU和NLG任务上有很好的表现
  • 容易学习

模型

  1. BERT (from Google) released with the paper BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.
  2. GPT (from OpenAI) released with the paper Improving Language Understanding by Generative Pre-Training by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
  3. GPT-2 (from OpenAI) released with the paper Language Models are Unsupervised Multitask Learners by Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei and Ilya Sutskever.
  4. Transformer-XL (from Google/CMU) released with the paper Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context by Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
  5. XLNet (from Google/CMU) released with the paper XLNet: Generalized Autoregressive Pretraining for Language Understanding by Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
  6. XLM (from Facebook) released together with the paper Cross-lingual Language Model Pretraining by Guillaume Lample and Alexis Conneau.
  7. RoBERTa (from Facebook), released together with the paper a Robustly Optimized BERT Pretraining Approach by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
  8. DistilBERT (from HuggingFace) released together with the paper DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into DistilGPT2.
  9. CTRL (from Salesforce), released together with the paper CTRL: A Conditional Transformer Language Model for Controllable Generation by Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney, Caiming Xiong and Richard Socher.
  10. CamemBERT (from FAIR, Inria, Sorbonne Université) released together with the paper CamemBERT: a Tasty French Language Model by Louis Martin, Benjamin Muller, Pedro Javier Ortiz Suarez, Yoann Dupont, Laurent Romary, Eric Villemonte de la Clergerie, Djame Seddah, and Benoît Sagot.
  11. ALBERT (from Google Research), released together with the paper a ALBERT: A Lite BERT for Self-supervised Learning of Language Representations by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.
  12. XLM-RoBERTa (from Facebook AI), released together with the paper Unsupervised Cross-lingual Representation Learning at Scale by Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov.

使用

对于每个模型,这个库主要涉及3个类

  • model classes:提供模型的结构,如:BertModel
  • configuration classes:存储构建模型的所有参数,如BertConfig
  • tokenizer classes:提供模型的词汇表和用于对字符串解码/编码的方法,如BertTokenizer

所有的实例可以通过from_pretrained()加载预训练模型,通过save_pretrained()保存模型

BERT example

从字符串获得输入向量

import torch
from transformers import BertTokenizer, BertModel, BertForMaskedLM

# OPTIONAL: if you want to have more information on what's happening under the hood, activate the logger as follows
import logging
logging.basicConfig(level=logging.INFO)

# Load pre-trained model tokenizer (vocabulary)
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
# 中文bert模型'bert-base-chinese'
# bert 特殊的符号
# '[MASK]' 用于mask language model
# '[CLS]' 开头,用于分类的标记
# '[PAD]' 
# '[SEP]' 结尾,句子分隔符
# '[UNK]'

# Tokenize input
text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
tokenized_text = tokenizer.tokenize(text)

# Mask a token that we will try to predict back with `BertForMaskedLM`
masked_index = 8
tokenized_text[masked_index] = '[MASK]'
assert tokenized_text == ['[CLS]', 'who', 'was', 'jim', 'henson', '?', '[SEP]', 'jim', '[MASK]', 'was', 'a', 'puppet', '##eer', '[SEP]']

# Convert token to vocabulary indices
indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
# Define sentence A and B indices associated to 1st and 2nd sentences (see paper)
segments_ids = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1]

# Convert inputs to PyTorch tensors
tokens_tensor = torch.tensor([indexed_tokens])
segments_tensors = torch.tensor([segments_ids])

对输入进行编码

# Load pre-trained model (weights)
model = BertModel.from_pretrained('bert-base-uncased')

# Set the model in evaluation mode to deactivate the DropOut modules
# This is IMPORTANT to have reproducible results during evaluation!
model.eval()

# If you have a GPU, put everything on cuda
tokens_tensor = tokens_tensor.to('cuda')
segments_tensors = segments_tensors.to('cuda')
model.to('cuda')

# Predict hidden states features for each layer
with torch.no_grad():
    # See the models docstrings for the detail of the inputs
    outputs = model(tokens_tensor, token_type_ids=segments_tensors)
    # Transformers models always output tuples.
    # See the models docstrings for the detail of all the outputs
    # In our case, the first element is the hidden state of the last layer of the Bert model
    encoded_layers = outputs[0]
# We have encoded our input sequence in a FloatTensor of shape (batch size, sequence length, model hidden dimension)
assert tuple(encoded_layers.shape) == (1, len(indexed_tokens), model.config.hidden_size)

使用BertForMaskedLM预测masked token

# Load pre-trained model (weights)
model = BertForMaskedLM.from_pretrained('bert-base-uncased')
model.eval()

# If you have a GPU, put everything on cuda
tokens_tensor = tokens_tensor.to('cuda')
segments_tensors = segments_tensors.to('cuda')
model.to('cuda')

# Predict all tokens
with torch.no_grad():
    outputs = model(tokens_tensor, token_type_ids=segments_tensors)
    predictions = outputs[0]

# confirm we were able to predict 'henson'
predicted_index = torch.argmax(predictions[0, masked_index]).item()
predicted_token = tokenizer.convert_ids_to_tokens([predicted_index])[0]
assert predicted_token == 'henson'

参考

1.https://huggingface.co/transformers/index.html